Independence (Linear and Affine)

Linear Algebra
Department of Computer Engineering
Sharif University of Technology
Hamid R. Rabiee rabiee@sharif.edu
Maryam Ramezani maryam.ramezani@sharif.edu

Overview

Introduction
Linear Independence
Functions Linearly Independent
Polynomials Linearly Independent
Affine Combination
Affine Independence

Introduction

Size of the House

- \#Room
- Size
- \#Bedroom
- Age
- Address features: Street, Alley, …
- Size of part1, part2, part3, part4
- Floors
- \#Bathrooms
- $\cdot \cdots$

Least Squares Error Correction

Least Squares Error Correction

Error 1:
Error 2:
Error 3:

Least Squares

- Objective: $\hat{y}=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}+b$ $\min \|y-\hat{y}\|$

Least Square Method
cuemath
THE MATH EXPERT

व $A x=b \quad \rightarrow \quad x=A^{-1} b$ Inverse of Matrix/Pseudo Inverse

- Regression

Linear Algebra and Machine Learning Application

Simple regression

$y=y$-intercept + slope x

Multiple regression

$$
y=y \text {-intercept }+ \text { slope } x+\text { slope } z
$$

Linear Independence

Linear Independence (Algebra)

Definition

Dependent

- For at least one $\lambda \neq 0$

$$
0=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}, \quad \lambda \in \mathbb{R}
$$

\square A set of vectors is dependent if at least one vector in the set can be expressed as a linear weighted combination of the other vectors in that set.

Definition

Independent
\square Only when all $\lambda_{i}=0$

$$
0=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}, \quad \lambda \in \mathbb{R}
$$

\square No vector in the set is a linear combination of the others (has only the trivial solution)

Linear Independence (Geometry)

Definition

A set of vectors is linear independent if the subspace dimensionality (its span) equals the number of vectors.

Example

- vectors spans?
A)

Geometric sets of vectors in \mathbb{R}^{2}

Example

Example

- Let $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], v_{2}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$, and $v_{3}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$.
a a) $v_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}6 \\ 2\end{array}\right]$
b) $v_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right], v_{2}=\left[\begin{array}{l}6 \\ 2\end{array}\right]$

Theorem

Any set of vectors that contains the zeros vector is guaranteed to be linearly dependent.

Proof

Theorem

An indexed set $S=\left\{v_{1}, \ldots, v_{n}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and $v_{1} \neq 0$, then some v_{j} (with $j>1$) is a linear combination of the preceding vectors, v_{1}, \ldots, v_{j-1}.

Proof

\square Does not say that every vector
\square Does not say that every vector in a linearly dependent set is a linear combination of the preceding vectors. A vector in a linearly dependent set may fail to be a linear combination of the other vectors.

Characterization of Linearly Dependent sets

Proof

If some v_{j} in S equals a linear combination of the other vectors, then v_{j} can be subtracted from both sides of the equation, Producing a linear dependence relation with a nonzero weight (-1) on v_{j}. [For instance, if $v_{1}=c_{2} v_{2}+c_{3} v_{3}$, then $0=(-1) v_{1}+c_{2} v_{2}+c_{3} v_{3}+0 v_{4}+$ $\cdots+0 v_{n}$.] Thus S is linearly dependent.

Conversely, suppose S is linearly dependent. If v_{1} is zero, then it is a (trivial) linear combination of the other vectors in S. Otherwise, $v_{1} \neq 0$, and there exist weights c_{1}, \ldots, c_{n} not all zero, such that

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{n}=0
$$

Characterization of Linearly Dependent sets

Proof

Let j be the largest subscript for which $c_{j} \neq 0$. If $j=1$, then $c_{1} v_{1}=0$, which is impossible because $v_{1} \neq 0$. So $j>1$ and

$$
\begin{aligned}
& c_{1} v_{1}+\cdots+c_{j} v_{j}+0 v_{j+1}+0 v_{n}=0 \\
& \qquad c_{j} v_{j}=-c_{1} v_{1}-\cdots-c_{j-1} v_{j-1} \\
& v_{j}=\left(-\frac{c_{1}}{c_{j}}\right) v_{1}+\cdots+\left(-\frac{c_{j-1}}{c_{j}}\right) v_{j-1}
\end{aligned}
$$

- The vectors coming from the vector form of the solution of a matrix equation $A x=0$ are linearly independent

Example

\square Vectors related to x_{2} and x_{3} are linear independent.
Columns of A related to to x_{2} and x_{3} are linear dependent.
$\square \operatorname{Span}\left\{A_{1}, A_{2}, A_{3}\right\}=\operatorname{Span}\left\{A_{1}\right\}$

$$
\mathrm{A}=\left[\begin{array}{ccc}
1 & -1 & 2 \\
-2 & 2 & -4
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]
$$

Important

\square If a collection of vectors is linearly dependent, then any superset of it is linearly dependent.

Any nonempty subset of a linearly independent collection of vectors is linearly independent.

Theorem

\square Any set of $\mathrm{p}>n$ vectors in \mathbb{R}^{n} is necessarily dependent.
\square Any set of $p \leq n$ vectors in \mathbb{R}^{n} could be linearly independent.

Proof

$$
n\left[\right]
$$

Example

a. $\left[\begin{array}{l}1 \\ 7 \\ 6\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 9\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 5\end{array}\right],\left[\begin{array}{l}4 \\ 1 \\ 8\end{array}\right]$
b. $\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 8\end{array}\right]$
c. $\left[\begin{array}{c}-2 \\ 4 \\ 6 \\ 10\end{array}\right],\left[\begin{array}{c}3 \\ -6 \\ -9 \\ 15\end{array}\right]$

Linear Dependent Properties

- Suppose vectors v_{1}, \ldots, v_{n} are linearly dependent:

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=0
$$

with $c_{1} \neq 0$. Then:

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}=\operatorname{span}\left\{v_{2}, \ldots, v_{n}\right\}
$$

- When we write a vector space as the space of a list of vectors, we would like that list to be as short as possible. This can achieved by iterating.

Theorem
Suppose x is linear combination of linearly independent vectors
$v_{1}, \ldots, v_{n}:$

$$
x=\beta_{1} v_{1}+\cdots+\beta_{n} v_{n}
$$

The coefficients $\beta_{1}, \ldots, \beta_{n}$ are unique.

Proof

Important

\square Step 1: Count the number of vectors (call that number p) in the set and compare to n in \mathbb{R}^{n}. As mentioned earlier, if $\mathrm{p}>n$, then the set is necessarily dependent. If $\mathrm{p} \leq n$ then you have to move on to step 2.
\square Step 2: Check for a vector of all zeros. Any set that contains the zeros vector is a dependent set.
\square The rank of a matrix is the estimate of the number of linearly independent rows or columns in a matrix.

Functions Linearly Independent

- Let $f(t)$ and $g(t)$ be differentiable functions. Then they are called linearly dependent if there are nonzero constants c_{1} and c_{2} with

$$
c_{1} f(t)+c_{2} g(t)=0
$$

for all t . Otherwise they are called linearly independent.

Example

Linearly dependent or independent?
\square Functions $f(t)=2 \sin ^{2} t$ and $g(t)=1-\cos ^{2} t$
\square Functions $\left\{\sin ^{2} x, \cos ^{2} x, \cos (2 x)\right\} \subset \mathcal{F}$

Polynomials Linearly Independent

Vector Space of Polynomials

Example

Are $(1-x),(1+x), x^{2}$ linearly independent?

Affine Combination

- For vectors $x_{1}, x_{2}, \ldots, x_{k}$: any point y is a linear combination of them iff:

$$
y=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{\mathrm{i}} x_{i} \quad \forall i, \alpha_{\mathrm{i}} \in \mathbb{R}
$$

- Instead of being positive, if we put the restriction that α_{i} 's sum up to 1 , it is called an affine combination

$$
y=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{\mathrm{i}} x_{i} \quad \forall i, \alpha_{\mathrm{i}} \in \mathbb{R}, \sum_{i} \alpha_{\mathrm{i}}=1
$$

Affine Combinations (Geometry)

- Linear combination and Affine combination (no origin, independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments)
- Affine combination of two vectors
- Affine combination of z

W

Affine Combination

Theorem
A point y in \mathbb{R}^{n} is an affine combination of v_{1}, \ldots, v_{p} in \mathbb{R}^{n} if and only if $y-v_{i}$ is a linear combination of the translated points $v_{1}-v_{i}, v_{2}-v_{i}, \ldots, v_{p}-v_{i}$ Proof?

Example

Find a vector equation and parametric equations of the plane in \mathbb{R}^{4} that passes through

$$
(-17,6,29,0),(-13,3,25,-2) \text { and }(-15,6,25,-1)
$$

Affine Independence

Affine Independence

Definition

An indexed set of points $\left\{v_{1}, \ldots, v_{k}\right\}$ in \mathbb{R}^{n} is affinely dependent if there exists real numbers c_{1}, \ldots, c_{k}, not all zero, such that

$$
c_{1}+\cdots+c_{k}=0 \quad \text { and } \quad c_{1} v_{1}+\cdots+c_{k} v_{k}=0
$$

Otherwise, the set is affinely independent.

- How to find affine dependent from linear dependent definition and affine combination
- Uniqueness of affine combination of affinely independent set.
- Linear dependence relation with affine dependence

Affine Independence

Note

Given an indexed set $S=\left\{v_{1}, \ldots, v_{p}\right\}$ in \mathbb{R}^{n}, with $p \geq 2$, the following statements are logically equivalent. That is, either they are all true statements or they are all false.
a. S is affinely dependent.
b. One of the points in S is an affine combination of other points in S.
c. The set $\left\{v_{2}-v_{1}, \ldots, v_{p}-v_{1}\right\}$ in \mathbb{R}^{n} is linearly dependent.
\mathbb{R}^{n} contains at most $n+1$ affinely independent points

Example

Example

Let $v_{1}=\left[\begin{array}{l}1 \\ 3 \\ 7\end{array}\right], v_{2}=\left[\begin{array}{c}2 \\ 7 \\ 6.5\end{array}\right], v_{3}=\left[\begin{array}{l}0 \\ 4 \\ 7\end{array}\right]$, and $v_{4}=\left[\begin{array}{c}0 \\ 14 \\ 6\end{array}\right]$, and let $S=\left\{v_{1}, \ldots, v_{4}\right\}$. Is S
affinely dependent?

Conclusion : Linear and Affine

Span	Linearly Independent
Want many vectors in small space	Want few vectors in big space
Adding vectors to list only helps	Deleting vectors from list only helps
Suppose that v_{1}, \ldots, v_{k} are columns of A, now we have: $\mathrm{AX}=\mathrm{b}$ has solution $\Leftrightarrow b \in \operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$	Suppose that v_{1}, \ldots, v_{k} are columns of A, now we have:
$\mathrm{AX}=0$ has only trivial solution $(\mathrm{X}=0)$ $\Leftrightarrow v_{1}, \ldots, v_{k}$ are linearly independent.	

- Page 97 LINEAR ALGEBRA: Theory, Intuition, Code
- Page 213: David Cherney,
- Page 54: Linear Algebra and Optimization for Machine Learning

